22 research outputs found

    Finite element analysis of sheet metal forming process

    Get PDF
    Minimization of response times and costs and maximization of the efficiency and quality in producing a product are imperative for survival in the competitive manufacturing industry. Sheet metal forming is a widely used and costly manufacturing process, to which these considerations apply. Aluminum sheet becomes favorable compare to steel regards to some improvement at aerodynamic designs, increased engine efficiency and fuel economy. Wide range of aluminum automotive product included doors, fenders, bumpers face bars, seat frames and roof panels have been produced. This paper was carried out to study the finite element (elastic-plastic) analysis of sheet metal forming process using the finite element software. LUSAS simulation was carried out to gain accurate and critical understanding of sheet forming process. Axisymmetry element mesh and plain strain element mesh were use incorporated with slideline features to model and study the sheet metal forming process. Simulation of elasticplastic behavior of aluminum sheet was carried out under non-linear condition to investigate sheet metal forming process

    Disaster management in industrial areas: perspectives, challenges and future research

    Get PDF
    Purpose: In most countries, development, growth, and sustenance of industrial facilities are given utmost importance due to the influence in the socio-economic development of the country. Therefore, special economic zones, or industrial areas or industrial cities are developed in order to provide the required services for the sustained operation of such facilities. Such facilities not only provide a prolonged economic support to the country but it also helps in the societal aspects as well by providing livelihood to thousands of people. Therefore, any disaster in any of the facilities in the industrial area will have a significant impact on the population, facilities, the economy, and threatens the sustainability of the operations. This paper provides review of such literature that focus on theory and practice of disaster management in industrial cities. Design/methodology/approach: In the paper, content analysis method is used in order to elicit the insights of the literature available. The methodology uses search methods, literature segregation and developing the current knowledge on different phases of industrial disaster management. Findings: It is found that the research is done in all phases of disaster management, namely, preventive phase, reactive phase and corrective phase. The research in each of these areas are focused on four main aspects, which are facilities, resources, support systems and modeling. Nevertheless, the research in the industrial cities is insignificant. Moreover, the modeling part does not explicitly consider the nature of industrial cities, where many of the chemical and chemical processing can be highly flammable thus creating a very large disaster impact. Some research is focused at an individual plant and scaled up to the industrial cities. The modeling part is weak in terms of comprehensively analyzing and assisting disaster management in the industrial cities. Originality/value: The comprehensive review using content analysis on disaster management is presented here. The review helps the researchers to understand the gap in the literature in order to extend further research for disaster management in large scale industrial cities.Peer Reviewe

    Fast upsetting of circular cylinders of aluminium metal matrix composites: experimental results and numerical analysis

    Get PDF
    Cylindrical specimens of Al/Cu and Al/Li metal matrix composite (MMC) were subjected to dynamic compression at room temperature using an experimental drop hammer. Force-time and displacement-time traces were recorded. The experimental results are compared with theoretical results obtained using finite-difference analysis proposed in a previous paper by the authors [1]. The computational results obtained for the force-time histories agree reasonably with the experimental observation. Effect of strain rate and thermal softening on the mechanical behaviour of Al/Cu MMC and Al/Li MMC were examined

    A metaheuristic approach to manufacturing process planning in reconfigurable manufacturing systems

    Get PDF
    Manufacturing process planning (MPP) is concerned with decisions regarding selection of an optimal configuration for processing parts. For multiparts reconfigurable manufacturing lines, such decisions are strongly influenced by the types of processes available, the relationships for sequencing the processes and the order of processing parts. Decisions may conflict, hence the decision making tasks must be carried out in a concurrent manner. This paper outlines an optimization solution technique for the MPP problem in reconfigurable manufacturing systems (RMSs). MPP is modelled in an optimization perspective and the solution methodology is provided through a metaheuristic technique known as simulated annealing. Analytical functions for modelling MPP are based on knowledge of processes available to the manufacturing system as well as processing constraints. Application of this approach is illustrated through a multistage parallel–serial reconfigurable manufacturing line. The results show that significant improvements to the solution of this type of problem can be gained through the use of simulated annealing. Moreover, the metaheuristic technique is able to identify an optimal manufacturing process plan for a given production scenario

    Lean process management implementation through enhanced problem solving capabilities

    Get PDF
    All Original Equipment Manufacturers (OEM) organizations in Aerospace, Automotive and Electronics industries had to upgrade their functions. These organizations including suppliers and solutions providers are duty bound to improve their functions through strategic initiatives. One such initiative is Lean Process Management. Lean Process Management has proven to aid organizations in developing manufacturing and administrative management solutions and make the organization a leaner at the same time a ‘fitter’ one, achieving World Class standards in terms of production, quality, marketing, etc, etc. The issue or problem is, although a number of authors, experts, researchers have discussed the lean process management as part organization centric issues, they failed to provide an effective lean process management system. Besides the need to formulate an effective lean process as suggested by some authors, another important reason suggested is the employee’s development aspect regarding how to unlock the infinite potential of their workforce. This employee’s development is basically the problem solving capabilities of the employees while implementing the Lean through clear cutting protocols or processes of Lean Process Management. The employees need to be developed and equipped to contribute optimally to the process. Because of this scenario, the main objective of this study is to develop an employees development system which the author has acronym or trademark it as People Development System (PDS) to enhance problem solving capability among its employees while implementing the lean process management there. Although, the PDS can be implemented throughout the organization, if it is implemented in a particular department in an organization, it will be feasible to study and analyze its effectiveness in-depth. So, this study documents and analyzes the implementation of Lean process in the Kitting Department of the aerospace company, ABC Company. Qualitative and quantitative measures were also used to document the case study. The outcome of the people development system needs to be measured to understand its value in developing the problem solving capabilities among the employees. Only with developed and equipped employees, the Kitting Department can reduce its wastages, optimize its performance and thereby play a crucial role in making ABC Company a world class organization. As pertinent results of the PDS implementation, in general Kitting Department successfully achieved to meet their Department Key Performance Indicator and particularly the employees’ are also improve by practicing good lean behaviors and skill and knowledge in using lean tools which lead to better leanness level by improving employees’ problem solving capabilities in eliminating waste. On the whole, the lean process management and the resultant PDS is having positive applications, and importantly could also have positive applications in the future as well.Peer Reviewe

    Lean process management implementation through enhanced problem solving capabilities

    Get PDF
    All Original Equipment Manufacturers (OEM) organizations in Aerospace, Automotive and Electronics industries had to upgrade their functions. These organizations including suppliers and solutions providers are duty bound to improve their functions through strategic initiatives. One such initiative is Lean Process Management. Lean Process Management has proven to aid organizations in developing manufacturing and administrative management solutions and make the organization a leaner at the same time a ‘fitter’ one, achieving World Class standards in terms of production, quality, marketing, etc, etc. The issue or problem is, although a number of authors, experts, researchers have discussed the lean process management as part organization centric issues, they failed to provide an effective lean process management system. Besides the need to formulate an effective lean process as suggested by some authors, another important reason suggested is the employee’s development aspect regarding how to unlock the infinite potential of their workforce. This employee’s development is basically the problem solving capabilities of the employees while implementing the Lean through clear cutting protocols or processes of Lean Process Management. The employees need to be developed and equipped to contribute optimally to the process. Because of this scenario, the main objective of this study is to develop an employees development system which the author has acronym or trademark it as People Development System (PDS) to enhance problem solving capability among its employees while implementing the lean process management there. Although, the PDS can be implemented throughout the organization, if it is implemented in a particular department in an organization, it will be feasible to study and analyze its effectiveness in-depth. So, this study documents and analyzes the implementation of Lean process in the Kitting Department of the aerospace company, ABC Company. Qualitative and quantitative measures were also used to document the case study. The outcome of the people development system needs to be measured to understand its value in developing the problem solving capabilities among the employees. Only with developed and equipped employees, the Kitting Department can reduce its wastages, optimize its performance and thereby play a crucial role in making ABC Company a world class organization. As pertinent results of the PDS implementation, in general Kitting Department successfully achieved to meet their Department Key Performance Indicator and particularly the employees’ are also improve by practicing good lean behaviors and skill and knowledge in using lean tools which lead to better leanness level by improving employees’ problem solving capabilities in eliminating waste. On the whole, the lean process management and the resultant PDS is having positive applications, and importantly could also have positive applications in the future as well

    Experimental optimization of composite collapsible tubular energy absorber device

    Get PDF
    A four-phase program to improve the specific energy absorbed by axially crushed composite collapsible tubular energy absorber devices was undertaken. In the first phase, examining of the crushing behaviour of non-triggered tubes was carried out. The second phase is aimed at obtaining the best position for the triggered wall. The third phase focuses on the effects of material sizing in order to understand the influence of triggered wall length on the responses of composite circular tubes to the axial crushing load. The results of these three phases of the study contribute to the fourth whose objective is to optimize the shape geometry of the cross-section area to further improving in tube energy absorption capability. The experimental results demonstrated the strong potential benefits of optimizing the material distribution. The sizing and shape optimization of composite collapsible tubes exhibited a pronounced effect on their capability to absorb high specific energy under axial compressive load

    Modeling the technology transfer process in the petroleum industry: evidence from Libya

    Get PDF
    The purpose of this study was to propose a conceptual model for technology transfer (TT) that houses several factors. These factors are believed to influence the processes’ effectiveness and guide the TT performance. In addition, this study aimed to explore TT performance and the relationship between TT government support, infrastructure, TT environment, and TT learning capability. Oil production in Libya is dependent on foreign technology transferred into the country by foreign multinational petroleum companies. During the 1980s, the Libyan government launched a program of development known as “Libyanization” in the Libyan petroleum industry in an effort to create an absorptive capacity to acquire petroleum technology dominated by foreign companies. This study evaluates the level of technical change because of TT programs and the impact on knowledge and competitiveness performance of the Libyan petroleum industry. A questionnaire survey was administered to companies in the Libyan petroleum industry. There were 201 responses from industry professionals in the Libyan petroleum industry that were analyzed using structural equation modeling (SEM), exploratory factor analysis (EFA), and confirmatory factor analysis (CFA). In addition, the significance of direct and indirect interrelationships between model factors was determined through SEM. A path model was estimated and specified to include three process enablers, namely government support, host characteristics, and learning technology capability, and one outcome factor named TT performance. The results suggested that government support factor (government support, laws and regulations, petroleum industry strategy, international quality standards, and information technology) and technology learning capability factor (i.e., supervision, adoption, teamwork, absorption, training, technology complexity, and industry knowledge) were determined to be the key predictors of TT performance to the host petroleum industry

    Artificial intelligence device and corresponding methods for selecting machinability data.

    No full text
    The present invention describes a device incorporating artificial intelligence and corresponding methods for recommending an optimal machinability data selection. The device comprises of a first component, which feeds the system with necessary input. A second component which is the main processing unit, acts as an inference engine to predict the outputs. The last component interprets the outputs, conveys the processed outputs to target location and converts them into necessary task. The inputs are identified as the machining operation, work piece material, machining tool type, and depth of cut. The outputs are the machining parameters, comprising of the optimal cutting speed and feed rate. The inference engine can be established with fuzzy logic, neural network of fuzzy-neural network

    Prioritisation of lean construction barriers in Qatari context: A fuzzy AHP approach

    No full text
    This study identifies, reviews and prioritises lean construction barriers in Qatari context. Lean has been widely adopted in manufacturing and service sectors, but its applications in construction sector are found in scarce. The study addresses an urgent need of identifying lean construction barriers (LCBs) and its prioritisation. For obtaining a comprehensive barrier set, the study uses Scopus database. Subsequently, fuzzy analytical hierarchy process (FAHP) is applied for barrier intensity and ranking. This study prioritises 28 barriers that hinder lean adoption in construction. The results reveal that 'policy related barriers' and 'economic and managerial barriers' possess high intensity in obstructing lean adoption. The authors expect that critical review and prioritisation of lean construction barriers will help both researchers and practitioners in formulating appropriate strategies to overcome these barriers.Scopu
    corecore